
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gpht20

Phase Transitions
A Multinational Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpht20

Preparation and characterization of NiFe2O4 thin
films for supercapacitor applications

Vidyadevi A. Jundale, Dilip A. Patil & Abhijit A. Yadav

To cite this article: Vidyadevi A. Jundale, Dilip A. Patil & Abhijit A. Yadav (2022) Preparation and
characterization of NiFe2O4 thin films for supercapacitor applications, Phase Transitions, 95:11,
786-802, DOI: 10.1080/01411594.2022.2122825

To link to this article:  https://doi.org/10.1080/01411594.2022.2122825

Published online: 20 Sep 2022.

Submit your article to this journal 

Article views: 53

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gpht20
https://www.tandfonline.com/loi/gpht20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01411594.2022.2122825
https://doi.org/10.1080/01411594.2022.2122825
https://www.tandfonline.com/action/authorSubmission?journalCode=gpht20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpht20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01411594.2022.2122825
https://www.tandfonline.com/doi/mlt/10.1080/01411594.2022.2122825
http://crossmark.crossref.org/dialog/?doi=10.1080/01411594.2022.2122825&domain=pdf&date_stamp=2022-09-20
http://crossmark.crossref.org/dialog/?doi=10.1080/01411594.2022.2122825&domain=pdf&date_stamp=2022-09-20


Preparation and characterization of NiFe2O4 thin films for
supercapacitor applications
Vidyadevi A. Jundalea,b, Dilip A. Patilc and Abhijit A. Yadav a

aThin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya
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ABSTRACT
Mesoporous NiFe2O4 thin films have been prepared by chemical spray
pyrolysis. The films are characterized by XRD, FESEM, EDAX, UV-Visible
spectroscopy, DC electrical resistivity and electrochemical
measurements. XRD result shows the cubic crystal structure with Fd-3 m
(227) space group. Crystallite size is found in the range of 14–21 nm.
FESEM showed crack free, well defined, uniform, mesoporous spherical
grain-like surface morphology. EDAX study confirmed nearly
stoichiometric deposition. The optical absorption studies confirmed
direct allowed type transition with bandgap in the range of 2.09–
2.29 eV. The films showed room temperature electrical resistivity of
2.34 × 104 Ωcm. The NiFe2O4 thin film spray deposited at 450°C
exhibited a specific capacitance of 591 Fg−1 at a scan rate of 5 mV·s−1

from CV and specific capacitance of 632 Fg−1 at a current density of
0.5 Ag−1 from GCD. These findings recommend a constructive route
towards the preparation of NiFe2O4 electrodes for high-performance
electrochemical supercapacitors.
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1. Introduction

Energy is important for human development and maintaining the quality of life. Energy pro-
duction, which rest on the combustion of fossil fuels, is affecting the world economy and ecology
rigorously [1,2]. There has been an increasing demand for environment friendly, high performance
renewable energy storage devices. Electrochemical energy is an inevitable part of the clean energy
portfolio [3–5]. Batteries, supercapacitors and fuel cells are exceptional energy storage devices
working on the principle of electrochemical energy conversion. Amongst these, supercapacitors
are emerging as one of most important and promising energy storage devices because of its number
of abilities including high power density, rapid charge–discharge rate, safe for handling and long life
[6–11]. Supercapacitors are categorized into electric double-layer capacitor (EDLC) and pseudoca-
pacitor [12]. In EDLC, the charge separation at the active electrode and electrolyte solution is
responsible for storage of the electrochemical energy. In EDLC, mostly activated carbon, graphene
oxide and carbon materials are used as electrodes. While in pseudocapacitor, electrochemical
energy is stored due to faradaic reaction between active electrode (conducting polymer or transition
metal oxide) and electrolyte solution [13–16]. The energy storage capacity of transition metal oxides
is higher as compared to EDLC materials because of its rapid reversible faradaic reactions [17]. The
electrode materials in thin film form have few advantages and disadvantages, which should be con-
sidered for their specific practical applications. For example, carbon based thin film electrode shows
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the high conductivity, long cycling stability but low specific capacitance, whereas metal oxide thin
films exhibit large specific capacitance but suffer from poor conductivity; conducting polymers have
large specific capacitance and good conductivity and poor cycling stability [18].

The transition metal oxides have been explored as a material for supercapacitor electrodes due to
its high conductivity [19]. The various transition metal oxides RuO2, IrO2, Fe3O4, Co3O4, MnO2,
NiO, etc which possessed high pseudocapacitance have been described in literature [20–24]. The
bimetallic oxides NiCo2O4, NiFe2O4, CoFe2O4, MnFe2O4, ZnFe2O4 and CuFe2O4 as supercapacitor
electrode material have drawn more attentions in recent years due to their high theoretical charge
storage capacity, low cost, natural abundance and easy synthesis process [25,26]. Amongst these,
NiFe2O4 have been mostly used in various fields including magnetic data storage devices, satellite
communication, memory devices, antenna rods, transformer cores, solid oxide fuel cells, catalysis,
etc due to their high electrochemical performance, good electrochemical stability, wide operating
potential window, superior rate capability and easy synthesis [27–29].

The method of preparation plays a significant role in monitoring the structures and properties of
the electrode materials. In literature different physical and chemical methods including pulse laser
deposition [30], sol–gel [27,31], chemical combustion route [32], chemical bath deposition [27],
solvothermal [33], hydrothermal [33,34], co-precipitation [35] and spray pyrolysis [36] have
been used for preparation of NiFe2O4. Amongst these, spray pyrolysis which is mostly facile, effec-
tive, greatly scalable and appropriate for large area deposition, offers substantial potential for the
rational design and preparation of numerous functional nanostructures with tailorable composition
and surface morphology [36,37].

In this paper NiFe2O4 thin films have been prepared onto amorphous and FTO coated glass sub-
strates by spray pyrolysis at various substrate temperatures. The effect of substrate temperature on
structural, morphological, compositional, optical, electrical and electrochemical properties of
NiFe2O4 thin films has been studied.

2. Experimental details

NiFe2O4 thin films have been prepared onto ultrasonically cleaned amorphous and FTO
coated glass substrates using computerized chemical spray pyrolysis. The required quantities of
Ni(NO3)2.6H2O and Fe(NO3)3.9H2O were dissolved separately in double-distilled water to prepare
the 0.15 M precursor solutions. The Ni: Fe ratio was kept constant at 1:2 throughout the exper-
iment. For each deposition, 5 ml Ni(NO3)2.6H2O and 10 ml Fe(NO3)3.9H2O were mixed
thoroughly and 15 ml ethanol was added to make the final spraying solution 30 ml. For the prep-
aration of NiFe2O4 thin films, the substrate temperature was varied from 400°C to 475°C at the
interval of 25°C. The preparative parameters were optimized using electrochemical technique
and kept constant at their optimized values namely spray rate 3–4 ml·min−1; spray nozzle to sub-
strate distance 30 cm; air as carrier gas with pressure 176520 Nm−2.

Structural properties and phase identification of NiFe2O4 thin films were studied using the X-
ray diffractometer (PW-3710 Philips-Model) with Cu-Kα radiation (wavelength λ = 1.54056 Å).
FESEM (Model S-4800 Hitachi Corporation, Japan) was used to study the surface morphology.
Stoichiometry and material compositions were studied by EDAX. To determine the optical
bandgap, the optical absorption spectrum of the NiFe2O4 thin films was recorded by using
UV-Vis spectrophotometer (SHIMADZU-1700). Electrical conductivity measurements were
carried out using DC two-point probe method. The electrochemical measurements of NiFe2O4

thin films were carried out by using electrochemical analyzer (CHI 608D Instruments). The
conventional three electrode cell configuration system was used with 1 cm2 NiFe2O4

thin films as working electrode, platinum and saturated Ag/AgCl as a counter and reference
electrodes respectively in aqueous 1M KOH electrolyte. The electrochemical measurements
include the cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance
spectroscopy.
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3. Results and discussion

3.1. Growth mechanism

In spray pyrolysis, the precursor solution is pulverized through air and the fine droplets of the sol-
ution containing precursors of Ni and Fe are sprayed onto the preheated substrates. The thermal
decomposition of fine droplets of Ni(NO3)2.6H2O and Fe(NO3)3.9H2O results into the formation
of chocolate brown to dark brown NiFe2O4 thin films. Figure 1 shows the photograph of NiFe2O4

thin films prepared by spray pyrolysis at various substrate temperatures. The possible chemical
reaction can be given as,

Ni(NO3)2 · 6H2O+ 2Fe(NO3)3 · 9H2O � NiFe2O4 + 24H2O � + 8NO2 � + 2O2 � (1)

The similar reaction mechanism for NiFe2O4 thin films prepared by spray pyrolysis has been pre-
viously reported by Karthigayan et al. [38].

3.2. Film thickness

The gravimetric weight difference method was used for measurement of thickness of NiFe2O4

thin films prepared by spray pyrolysis at various substrate temperatures. The weight of the
NiFe2O4 thin films before and after deposition was measured using sensitive microbalance.
The film thicknesses were found to be 455, 596, 675 and 632 nm for NiFe2O4 thin films
prepared by spray pyrolysis at substrate temperatures of 400°C, 425°C, 450°C and 475°C
respectively. Figure 2 shows the variation of film thickness with substrate temperature for
NiFe2O4 thin films. It has been observed that as substrate temperature increases from 400°C
to 450°C, film thickness increases linearly upto 675 nm and above substrate temperature of
450°C, film thickness decreases to 632 nm. The effect of substrate temperature on the
film thickness can be explained as follows: the lower temperature 400°C, is not sufficient to
decompose the ions of the precursor solution resulting in lower thickness. At a certain
substrate temperature 450°C, decomposition occurs completely to their optimum level confi-
rming the terminal thickness of NiFe2O4 thin films being accomplished. At higher substrate
temperatures i.e. beyond the 450°C, rate of re-evaporation of solution from the surface of
substrate increases and film thickness decreases. A similar type of effect of substrate tempera-
ture on the film thickness was reported earlier for NiO thin films by spray pyrolysis
method [39].

Figure 1. Photograph of NiFe2O4 thin films prepared by spray pyrolysis at various substrate temperatures.
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3.3. X-ray diffraction

Structural analysis of NiFe2O4 thin films was carried out using X-ray diffraction with CuKα radiation
within 2θ range of 20о to 80о. Figure 3 shows X-ray diffraction patterns of NiFe2O4 thin films prepared
by spray pyrolysis at various substrate temperatures. Intensity peaks were observed at 2θ around

Figure 3. XRD patterns of NiFe2O4 thin films prepared by spray pyrolysis at various substrate temperatures.

Figure 2. Variation of film thickness with substrate temperature for NiFe2O4 thin films prepared by spray pyrolysis.
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35.70о, 37.32о, 43.38о, 53.81о, 57.39о and 63.02о with corresponding planes (311), (222), (400), (422),
(511) and (440) confirming the formation of cubic structure symmetry of the Fd-3 m (227) space
group. The observed XRD peaks were well matched with standard JCPDS data card (86-2267) [40].

From Figure 3 it has been witnessed that the NiFe2O4 films are highly oriented along (311) plane.
The peak intensity depends upon the substrate temperature used for preparation of NiFe2O4 thin
films. Peak intensity increases with increasing substrate temperature attains maximum value at 450°
C and decreases thereafter. At 450°C, the increased peak intensity (311) indicates improvement in
the crystallinity of NiFe2O4 thin films. The decreasing crystallinity after 450°C might be due to re-
evaporation of the material from the film surface or decrease in film thickness or both [41]. The
comparison between standard and calculated ‘d’ values confirmed that NiFe2O4 have cubic crystal
structure [JCPDS data card (86-2267)].

The crystallite size for (311) plane of NiFe2O4 thin films prepared by spray pyrolysis at various
substrate temperatures was estimated using Debye Scherrer formula [42]. The crystallite sizes were
found to be in the range of 14–21 nm. These values are less than 26 nm reported by Jamdade and
coworkers [43] for chemically grown nanostructured NiFe2O4.

The lattice parameter ‘a’ of NiFe2O4 thin films was determined using the standard relation [44],

1
d2

= h2 + k2 + l2

a2
(2)

The calculated average value of lattice parameter a = 8.3391 Å is close to the standard JCPDS
data card (86-2267), a = 8.3379 Å. Similar results were previously reported by Chavan et al. [37]
for Al3+ substituted nickel ferrite thin films. The standard and calculated ‘d’ values, lattice constant
‘a’ and crystallite sizes for the NiFe2O4 thin films prepared by spray pyrolysis at various substrate
temperatures are given in Table 1.

3.4. FESEM

Figure 4 shows the FESEM images (magnification ×200k) of NiFe2O4 thin films prepared by spray
pyrolysis at various substrate temperatures (a) 400°C, (b) 425°C, (c) 450°C and (d) 475°C

Table 1. Structural data for NiFe2O4 thin films prepared by spray pyrolysis at various substrate temperatures.

Substrate 2θ (°) d (Å) d (Å) hkl a (Å) D (nm)
temp. (°C) (Cal.) (Std.)

400 35.63 2.518 2.513 311 8.346 14
54.27 1.689 1.702 422
57.30 1.606 1.605 511
62.47 1.485 1.476 440

425 35.75 2.516 2.513 311 8.338 15
37.26 2.411 2.407 222
43.31 2.088 2.085 400
54.03 1.695 1.702 422
57.84 1.593 1.605 511
62.59 1.483 1.476 440

450 35.51 2.527 2.513 311 8.336 21
37.17 2.417 2.407 222
43.23 2.092 2.085 400
54.15 1.692 1.702 422
57.60 1.599 1.605 511
62.94 1.475 1.476 440

475 35.75 2.510 2.513 311 8.335 20
37.05 2.425 2.407 222
43.17 2.094 2.085 400
54.15 1.692 1.702 422
57.51 1.601 1.605 511
62.94 1.504 1.476 440

2θ; Bragg’s angle, d; interplanar spacing, hkl; miller indices, a; lattice constant, D; crystallite size.
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respectively. It shows crack free and well-distributed mesoporous spherical grain-like surface mor-
phology. As witnessed from Figure 4 the surface morphology depends on the substrate temperature
used for preparation of NiFe2O4 thin films. At substrate temperature 400°C, FESEM image shows
the formation of small grain-like morphology with porous nature. FESEM results are in well agree-
ment with the XRD results. A similar surface morphology was previously reported by Kumar and
colleagues [45] for NiFe2O4 nanoparticles synthesized by one step hydrothermal method.

At substrate temperature of 425°C, FESEM shows the agglomeration of the grains with slight
increase in size of spherical grains due to the interaction between the magnetic nanoparticles
[37]. At substrate temperature of 450°C, films show dense and well-grown mesoporous intercon-
nected grain-like morphology with uniform distribution of grains. Similar spherical grain-like
surface morphology of NiFe2O4 was previously reported by Moradmard et al. [46]. The films pre-
pared at 475°C shows the rougher surface as compared to films prepared at substrate temperature of
450°C. The NiFe2O4 prepared thin films prepared at substrate temperature of 450°C shows inter-
connected grain-like surface morphology providing maximum surface area favorable for electro-
chemical ion intercalation or deintercalation processes [47].

3.5. EDAX

Figure 5 shows the EDAX patterns of NiFe2O4 thin films prepared by spray pyrolysis at various sub-
strate temperatures. The pattern shows the peaks for nickel (Ni), iron (Fe) and oxygen (O) without
any impurity. Table 2 shows the compositional analysis of NiFe2O4 thin films. It proves that films
are homogeneous and nearly stoichiometric. NiFe2O4 thin films prepared at substrate temperature

Figure 4. FESEM images (magnification × 200k) of NiFe2O4 thin films prepared by spray pyrolysis at various substrate tempera-
tures of (a) 400°C, (b) 425°C, (c) 450°C and (d) 475°C respectively.
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450°C, shows peaks of Ni, Fe and O elements with their atomic percentage 13.88%, 28.92% and
57.20% respectively confirming formation of stoichiometric NiFe2O4.

3.6. Optical

The optical absorption spectra of NiFe2O4 thin films prepared by spray pyrolysis at various sub-
strate temperatures was recorded in the wavelength range of 400 nm to 800 nm using UV-Vis spec-
trophotometer. The absorption coefficient was found to be 104 cm−1. The optical bandgap (Eg) of
the NiFe2O4 thin films was estimated using the Tauc’s relation [48,49]. Figure 6(a) shows the plot of
(αhυ)2 versus hυ for NiFe2O4 thin films prepared by spray pyrolysis at various substrate tempera-
tures. The straight line nature of the plot specifies the direct allowed type transition [50,51].

The bandgap energies of NiFe2O4 thin films were determined from the intercepts of (αhυ)2 of
versus hυ plots on the energy axis (x-axis). Figure 6(b) shows the variation of bandgap energy
with substrate temperature for NiFe2O4 thin films. The bandgap energies are found in the range
of 2.09–2.29 eV for NiFe2O4 thin films. The bandgap energies of NiFe2O4 thin films prepared by
spray pyrolysis at various substrate temperatures are mentioned in Table 3. These bandgap energies

Figure 5. EDAX patterns of NiFe2O4 thin films prepared by spray pyrolysis at substrate temperatures of (a) 400°C, (b) 425°C, (c)
450°C and (d) 475°C respectively.

Table 2. Compositional analysis of NiFe2O4 thin films prepared by spray pyrolysis at various
substrate temperatures.

Substrate Atomic percentage in NiFe2O4 thin films

Temp. (°C) Ni Fe O

400 12.36 26.62 61.02
425 13.75 27.55 58.70
450 13.88 28.92 57.20
475 14.12 27.49 58.39
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are in close agreement with values of 1.78–2.72 eV reported by Tong et al. [52] and 1.87 eV reported
by Zhao and colleagues [53]. The observed bandgap energies can be attributed to the spinel struc-
ture [54] and spinel ferrites have ability of exhibiting different redox states and electrochemical

Figure 6. (a) Variation of (αhυ) 2 versus hυ and (b) Variation of bandgap energy with substrate temperature for NiFe2O4 thin films
prepared by spray pyrolysis at various substrate temperatures.
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stability [55]. Generally, narrow bandgap improves the rate capability, cyclability [56] and specific
capacitance [57]. Thus the observed lower bandgap of NiFe2O4 thin films is favourable for super-
capacitor applications. The variation in the bandgap energy with substrate temperature can be
attributed to deviation in film thickness and surface morphology of NiFe2O4 films [58].

3.7. Electrical resistivity

Electrical resistivity measurements on NiFe2O4 thin films were carried out using the DC two-point
probe method in the temperature range 300 K to 500 K under dark condition. For the resistivity
measurements, silver paste was applied to NiFe2O4 thin films in two-bar pattern. Figure 7 shows
the variation of logρ versus inverse of absolute temperature (1000/T) for NiFe2O4 thin films pre-
pared by spray pyrolysis at various substrate temperatures. From figure with increase in operating
temperature the resistivity of NiFe2O4 thin films decreases showing typical semiconducting behav-
ior. The electrical resistivities of NiFe2O4 thin films are given in Table 3. The lowest room tempera-
ture electrical resistivity was found to be 2.34 × 104Ωcm for NiFe2O4 thin films prepared at 450°C,
which is lower than the reported value of 3.06 × 109Ωcm by Kambale et al. [59] for cobalt-doped

Figure 7. Variation of logρ with inverse of absolute temperature (1000/T) for NiFe2O4 thin films prepared by spray pyrolysis at
various substrate temperatures.

Table 3. Optical and electrical properties of NiFe2O4 thin films prepared by spray pyrolysis at various substrate temperatures.

Substrate Optical bandgap Electrical resistivity (Ω-cm) Activation energy (eV)

Temp. (°C) (eV) 300 K (×104) 500 K (×102) LT HT

400 2.29 138 3.55 0.016 0.034
425 2.15 36.3 1.07 0.014 0.037
450 2.09 2.34 0.24 0.020 0.025
475 2.18 7.04 0.55 0.018 0.031

LT – Low temperature; HT – High temperature.
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nickel ferrites, prepared using standard ceramic technique. It has been observed that as substrate
temperature increases from 400°C to 450°C electrical resistivity decreases and above 450°C resis-
tivity increases. This behaviour is due to decrease in film thickness above substrate temperature
of 450°C. Generally films with lower thicknesses show the poor crystallinity, lattice defect and
higher resistivity [60].

The activation energies were determined by using Arrhenius equation [60] and are found to be
in the range of 0.025–0.037 eV and 0.014–0.020 eV in high temperature and low temperature
regions respectively. These values confirm that the conduction mechanism in high temperature
and low temperature regions is thermally activated process considered as variable range hopping
mechanism and thermionic emission respectively [61].

3.8. Electrochemical characterization

3.8.1. Cyclic voltammetry
Figure 8 shows the cyclic voltammograms (CV) at different scan rates for NiFe2O4 thin films within
potential window of 0.0–0.5 V versus Ag/AgCl in aqueous 1M KOH electrolyte. The redox feature
of CV curves demonstrates pseudocapacitive behaviour. CV curve reveals that intensity of the oxi-
dation/reduction peak increases with increase in substrate temperature upto 450°C and it is associ-
ated to the redox processes observed at different sites. These redox peaks are related to the oxidation
and reduction states of Ni and Fe [62]. The electrochemical reactions involved in the energy storage

Figure 8. CV curves at different scan rates for NiFe2O4 thin films prepared by spray pyrolysis at substrate temperatures of (a) 400°
C, (b) 425°C, (c) 450°C and (d) 475°C respectively.
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mechanism (Ni2+/Ni3+ or Fe3+/Fe2+) are as follows [63];

NiFe2O4 +OH− +H2O ↔ NiOOH+ 2FeOOH+ e− (3)

The specific capacitances (Csp) at different scan rates of NiFe2O4 thin films were calculated and
are given in Table 4. It has been observed that, specific capacitance increases with increase in sub-
strate temperature used for preparation of NiFe2O4 thin films up to 450°C and above 450°C specific
capacitance decreases. This behaviour may be due to the enhancement of the surface area of NiFe2-
O4 thin films as seen from FESEM. Generally, the nanosized mesoporous structure of NiFe2O4

shows maximum specific capacitance than the rough surface [64] and hence above 450°C substrate
temperature the specific capacitance decreases due to rough surface observed in FESEM. The maxi-
mum specific capacitance was found to be 591 Fg−1 at a scan rate of 5 mV·s−1 for NiFe2O4 thin films
prepared at substrate temperature of 450°C. This value of specific capacitance is higher than
541 Fg−1 at scan rate 2 mV·s−1 for NiFe2O4 reported by Bhojane et al. [65], 287 Fg−1 in 1M
Na2SO3 electrolyte reported by Jamadade and coworkers [66] for nickel doped iron hydroxide
thin films and 585 Fg−1 at scan rate 5 mV·s−1 for NiFe2O4 nanocone forest on carbon textile
solid state supercapacitors by Javed and colleagues [67].

Figure 9(a) shows the CV plots at scan rate of 10 mV·s−1 in the 1M KOH electrolyte for NiFe2O4

thin films prepared by spray pyrolysis at various substrate temperatures. The influence of scan rates
on the current density of the NiFe2O4 thin films were observed from CV. As the scan rate increases
redox current also increases and a small shift in peak towards positive or negative potential was
observed due to kinetic irreversibility in the redox process. This kinetic irreversibility occurs due
to polarization and ohmic resistance [57]. Figure 9(b) shows the variation of specific capacitance
with scan rate. It shows that as scan rate increases, the area under the curve also increases but
specific capacitance decreases. This is attributed to the fact that at higher scan rates the outer

Table 4. Specific capacitance at different scan rates from CV for NiFe2O4 thin films prepared by spray pyrolysis at various
substrate temperatures.

Substrate temperature (°C) → 400 425 450 475
Scan rate (mV·s−1)↓ Specific capacitance from CV (Fg−1)

5 383 450 591 510
10 317 395 507 450
20 270 339 423 381
50 222 277 340 310
100 188 222 300 263

Figure 9. (a) CV plots at scan rate of 10 mV·s−1 and (b) plot of specific capacitance versus scan rate for NiFe2O4 thin films pre-
pared by spray pyrolysis at various substrate temperatures.
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pores of electrode material get recovered by the ions or motion of the ions on the electrodes may be
fast, at the same time diffusion rate of ions in the electrolyte are slow [22, 68]. At lower scan rate,
inner and outer pores of electrode material are utilized for ions propagation completely in the active
electrode material [13].

3.8.2. Galvanostatic charge–discharge
To get more information about supercapacitive performance of NiFe2O4 thin films, galvanostatic
charge–discharge (GCD) was performed in 1M KOH electrolyte. The charge–discharge behaviour
at different current densities of NiFe2O4 thin films prepared by spray pyrolysis at various substrate
temperatures is shown in Figure 10. From figure the GCD exhibits linear behaviour implying that
the electrochemical redox reaction mechanism occurs at the electrolyte and active electrode
materials showing the pseudocapacitive behaviour of NiFe2O4 thin films [69]. The charging curves
are similar with their corresponding discharge curves with good linear voltage time profiles for all
films indicates good capacitive behaviour shown in Figure 11(a). Figure 11(b) shows the plot of
specific capacitance versus current density for NiFe2O4 thin films prepared by spray pyrolysis at
various substrate temperatures.

The specific capacitance, specific energy and specific power were determined using relations
given elsewhere [60]. The specific capacitances obtained from GCD curves at different current den-
sities are mentioned in the Table 5. It has been observed that as substrate temperature increases the
specific capacitance increases upto 450°C and decreases thereafter due to the enhancement of

Figure 10. GCD curves at different current densities for NiFe2O4 thin films prepared by spray pyrolysis at various substrate temp-
eratures of (a) 400°C, (b) 425°C, (c) 450°C and (d) 475°C respectively.
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surface morphology and film thickness. The maximum specific capacitance was found to be
632 Fg−1 and corresponding specific energy and specific power were found to be 17.78 Wh·kg−1

and 113 kW·kg−1 at current density of 0.5 Ag−1 for NiFe2O4 thin film prepared spray pyrolysis
at 450°C. These values of specific capacitance are superior to 480 Fg−1 at current density of
1 Ag−1 for core–shell NiFe2O4@NiFe2O4 nanofibers reported by Wang and co-workers [3].

3.8.3. Electrochemical impedance spectroscopy
To understand the benefit of the material for electrochemical supercapacitors, impedance spectra of
NiFe2O4 thin films were recorded in the frequency range from 1 Hz to 100 kHz. Figure 12 shows the
Nyquist plot for NiFe2O4 thin films prepared by spray pyrolysis at various substrate temperatures.
The diameter of semicircle indicates the charge transfer resistance (Rct) at the electrode electrolyte
interface. From figure, it has been observed that as the substrate temperature increases upto 450°C,
the diameter of semicircle decreases and increases thereafter which indicates that charge transfer
resistance of NiFe2O4 depends on the substrate temperature. The NiFe2O4 thin film prepared at
450°C has the lowest Rct indicating easy charge transfer process. From Table 6, the NiFe2O4 thin
film prepared at 400°C showed highest value of Rct due to incomplete decomposition whereas
for 475°C showed higher Rs and Rct due to lower film thickness.

4. Conclusions

In conclusion, the NiFe2O4 thin films have been successfully prepared using chemical spray pyrol-
ysis at various substrate temperatures. The films are of polycrystalline nature and well adherent on
the substrates. XRD patterns showed the formation of cubic crystal structure with Fd-3 m (227)
space group. Crystallite size is found in the range of 14–21 nm. FESEM images showed crack
free, well defined, uniform, mesoporous spherical grain-like surface morphology. EDAX study

Table 5. Specific capacitances from GCD for NiFe2O4 thin films prepared by spray pyrolysis at various substrate temperatures.

Substrate temperature (°C) → 400 425 450 475
Current density (Ag−1) ↓ Specific capacitance from GCD (Fg−1)

0.5 409 481 632 545
1.0 339 422 541 480
2.0 288 360 449 405
4.0 236 295 361 328

Figure 11. (a) GCD curves at current density of 1Ag−1 and (b) plot of specific capacitance versus current density for NiFe2O4 thin
films prepared by spray pyrolysis at various substrate temperatures.

798 V. A. JUNDALE ET AL.



confirmed nearly stoichiometric deposition of NiFe2O4 thin films. The absorption coefficient was
found to be in the range of 104 cm−1 with direct allowed type transition having bandgap energies
in the range of 2.09–2.29 eV. The NiFe2O4 thin film based supercapacitor exhibited superior elec-
trochemical performance with specific capacitance of 591 Fg−1 at a scan rate of 5 mV·s−1 from CV
and 632 Fg−1 at a current density of 0.5 Ag−1 from GCD 1M KOH electrolyte. The remarkable
mesoporous structure and electrical resistivity allows NiFe2O4 electrodes to be auspicious materials
for next generation high performance supercapacitors.
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